Рис. 1. Схема платы сетевого фильтра.

В советских телевизорах Горизонт Ц-257 применялся импульсный источник питания с промежуточным преобразованием напряжения сети частотой 50 Гц в импульсы прямоугольной формы с частотой следования 20...30 кГц и последующим их выпрямлением. Выходные напряжения стабилизируются путем изменения длительности и частоты повторения импульсов.

Источник выполнен в виде двух функционально законченных узлов: модуля питания и плата сетевого фильтра . В модуле обеспечена развязка шасси телевизора от сети, а элементы, гальванически связанные с сетью, закрыты экранами, ограничивающими доступ к ним.

Основные технические характеристики импульсного блока питания

  • Максимальная выходная мощность, Вт ........100
  • Коэффициент полезного действия ..........0,8
  • Пределы изменения напряжения сети, В ......... 176...242
  • Нестабильность выходных напряжений, %, не более ..........1
  • Номинальные значения тока нагрузок, мА, источников напряжений, В:
    135
    ....................500
    28 ....................340
    15 ..........700
    12 ..........600
  • Масса, кг ..................1

Рис. 2 Принципиальная схема модуля питания.

Он содержит выпрямитель сетевого напряжения (VD4-VD7), каскад запуска (VT3), узлы стабилизации (VT1) и блокировки 4VT2), преобразователь (VT4, VS1, Т1), четыре однополупериодных выпрямителя выходных напряжений (VD12-VD15) и компенсационный стабилизатор напряжения 12 В (VT5-VT7).

При включении телевизора напряжение сети через ограничительный резистор и цепи помехоподавления, расположенные на плате фильтров питания, поступает на выпрямительный мост VD4-VD7. Выпрямленное им напряжение через обмотку намагничивания I импульсного трансформатора Т1 проходит на коллектор транзистора VT4. Наличие этого напряжения на конденсаторах С16, С19, С20 индицирует светодиод HL1.

Положительные импульсы сетевого напряжения через конденсаторы С10, С11 и резистор R11 заряжают конденсатор С7 каскада запуска. Как только напряжение между эмиттером и базой 1 однопереходного транзистора VT3 достигает 3 В, он открывается и конденсатор С7 быстро разряжается через его переход эмиттер - база 1, эмиттерный переход транзистора VT4 и резисторы R14, R16. В результате транзистор VT4 открывается на 10...14 мкс. За это время ток в обмотке намагничивания I возрастает до 3...4 А, а затем, когда транзистор VT4 закрыт, уменьшается. Возникающие при этом на обмотках II и V импульсные напряжения выпрямляются диодами VD2, VD8, VD9, VD11 и заряжают конденсаторы С2, С6, С14: первый из них заряжается от обмотки II, два других - от обмотки V. При каждом последующем включении и выключении транзистора VT4 происходит подзарядка конденсаторов.

Что же касается вторичных цепей, то в начальный момент после включения телевизора конденсаторы С27- СЗО разряжены, и модуль питания работает в режиме, близком к короткому замыканию. При этом вся энергия, накопленная в трансформаторе Т1, поступает во вторичные цепи, и автоколебательный процесс в модуле отсутствует.

По окончании зарядки конденсаторов колебания остаточной энергии магнитного поля в трансформаторе Т1 создают такое напряжение положительной обратной связи в обмотке V, которое приводит к возникновению автоколебательного процесса.

В этом режиме транзистор VT4 открывается напряжением положительной обратной связи, а закрывается напряжением на конденсаторе С14, поступающим через тиристор VS1. Происходит это так. Линейно нарастающий ток открывшегося транзистора VT4 создает на резисторах R14 и R16 падение напряжения, которое в положительной полярности через ячейку R10C3 поступает на управляющий электрод тиристор VS1. В момент, определяемый порогом срабатывания, тиристор открывается, напряжение на конденсаторе С14 оказывается приложенным в обратной полярности к эмиттерному переходу транзистора VT4, и он закрывается.

Таким образом, включение тиристора задает длительность пилообразного импульса коллекторного тока транзистора VT4 и соответственно количество энергии, отдаваемой во вторичные цепи.

Когда выходные напряжения модуля достигают номинальных значений, конденсатор С2 заряжается настолько, что напряжение, снимаемое с делителя R1R2R3, становится больше напряжения на стабилитроне VD1 и транзистор VT1 узла стабилизации открывается. Часть его коллекторного тока суммируется в цепи управляющего электрода тиристора с током начального смещения, создаваемым напряжением на конденсаторе С6, и током, возникающим под действием напряжения на резисторах R14 и R16. В результате тиристор открывается раньше и коллекторный ток транзистора VT4 уменьшается до 2...2,5 А.

При увеличении напряжения сети или уменьшении тока нагрузки возрастают напряжения на всех обмотках трансформатора, а следовательно, и напряжение на конденсаторе С2. Это приводит к увеличению коллекторного тока транзистора VT1, более раннему открыванию тиристора VS1 и закрыванию транзистора VT4, а следовательно, к уменьшению мощности, отдаваемой в нагрузку. И наоборот, при уменьшении напряжения сети или увеличении тока нагрузки мощность, передаваемая в нагрузку, увеличивается. Таким образом, стабилизируются сразу все выходные напряжения. Подстроечным резистором R2 устанавливают их начальные значения.

В случае короткого замыкания одного из выходов модуля автоколебаниям срываются. В результате транзистор VT4 открывается только каскадом запуска на транзисторе VT3 и закрывается тиристором VS1 при достижении током коллектора транзистора VT4 значения 3,5...4 А. На обмотках трансформатора появляются пакеты импульсов, следующих с частотой питающей сети и частотой заполнения около 1 кГц. В этом режиме модуль может работать длительное время, так как коллекторный ток транзистора VT4 ограничен допустимым значением 4 А, а токи в выходных цепях - безопасными значениями.

С целью предотвращения больших бросков тока через транзистор VT4 при чрезмерно пониженном напряжении сети (140... 160 В) и, следовательно, при неустойчивом срабатывании тиристора VS1 предусмотрен узел блокировки, который в таком случае выключает модуль. На базу транзистора VT2 этого узла поступает пропорциональное выпрямленному сетевому постоянное напряжение с делителя R18R4, а на эмиттер - импульсное напряжение частотой 50 Гц и амплитудой, определяемой стабилитроном VD3. Их соотношение выбрано таким, что при указанном напряжении сети транзистор VT2 открывается и импульсами коллекторного тока открывает тиристор VS1. Автоколебательный процесс прекращается. С повышением напряжения сети транзистор закрывается и на работу преобразователя не влияет. Для уменьшения нестабильности выходного напряжения 12 В применен компенсационный стабилизатор напряжения на транзисторах (VT5-VT7) с непрерывным регулированием. Его особенность - ограничение тока при коротком замыкании в нагрузке.

С целью уменьшения влияния на другие цепи выходной каскад канала звукового сопровождения питается от отдельной обмотки III.

В импульсном трансформаторе ТПИ-3 (Т1) применен магнитопровод М3000НМС Ш12Х20Х15 с воздушным зазором 1,3 мм на среднем стержне.

Рис. 3. Схема расположения обмоток импульсного трансформатора ТПИ-3.

Намоточные данные трансформатора ТПИ-3 импульсного блока питания приведены :

Все обмотки выполнены проводом ПЭВТЛ 0,45. С целью равномерного распределения магнитного поля по вторичным обмоткам импульсного трансформатора и увеличения коэффициента связи обмотка I разбита на две части, расположенные в первом и последнем слоях и соединенные последовательно. Обмотка стабилизации II выполнена с шагом 1,1 мм в один слой. Обмотка III и секции 1 - 11 (I), 12-18 (IV) намотаны в два провода. Для снижения уровня излучаемых помех введены четыре электростатических экрана между обмотками и короткозамкнутый экран поверх магнитолровода.

На плате фильтров питания (рис. 1) размещены элементы заградительного фильтра L1C1-СЗ, токоограничивающий резистор R1 и устройство автоматического размагничивания маски кинескопа на терморезисторе R2 с положительным ТКС. Последнее обеспечивает максимальную амплитуду тока размагничивания до 6 А с плавным спадом в течение 2...3 с.

Внимание!!! При работе с модулем питания и телевизором необходимо помнить, что элементы платы фильтров питания и часть деталей модуля находятся под напряжением сети. Поэтому ремонтировать и проверять модуль питания и плату фильтров под напряжением можно только при включении их в сеть через разделительный трансформатор.

Шуруповерт, или аккумуляторная дрель очень удобный инструмент, но есть и существенный недостаток, - при активном использовании аккумулятор разряжается очень быстро, - за несколько десятков минут, а на зарядку требуются часы. Не спасает даже наличие запасного аккумулятора. Хорошим выходом из положения при проведении работ в помещении с рабочей электросетью 220V был бы внешний источник для питания шуруповерта от сети, который можно было бы использовать вместо аккумулятора. Но, к сожалению, промыш-ленно не выпускаются специализированные источники для питания шуруповертов от электросети (только зарядные устройства для аккумуляторов, которые невозможно использовать как сетевой источник из-за недостаточного выходного тока, а только как зарядное устройство).

В литературе и интернете встречаются предложения в качестве источника питания для шуруповерта с номинальным напряжением 13V использовать автомобильные зарядные устройства на основе силового трансформатора , а также блоки питания от персональных компьютеров и для галогенных осветительных ламп. Все это возможно неплохие варианты, но не претендуя на оригинальность, я предлагаю сделать специальный блок питания самостоятельно. Тем более, на основе приводимой мною схемы можно сделать и блок питания другого назначения.

И так, схема источника показана на рисунке в тексте статьи.

Это классический обратноходовый AC-DC преобразователь на основе ШИМ генератора UC3842.

Напряжение от сети поступает на мост на диодах VD1-VD4. На конденсаторе С1 выделяется постоянное напряжение около 300V. Этим напряжением питается импульсный генератор с трансформатором Т1 на выходе. Первоначально запускающее напряжение поступает на вывод питания 7 ИМС А1 через резистор R1. Включается генератор импульсов микросхемы и выдает импульсы на выводе 6. Они подаются на затвор мощного полевого транзистора VT1 в стоковой цепи которого включена первичная обмотка импульсного трансформатора Т1. Начинается работа трансформатора и появляются на вторичных обмотках вторичные напряжения . Напряжение с обмотки 7-11 выпрямляется диодом VD6 и используется
для питания микросхемы А1, которая перейдя на режим постоянной генерации начинает потреблять ток, который не способен поддерживать пусковой источник питания на резисторе R1. Поэтому при неисправности диода VD6 источник пульсирует, - через R1 конденсатор С4 заряжается до напряжения, необходимого для запуска генератора микросхемы, а когда генератор запускается повышенный ток С4 разряжает, и генерация прекращается. Затем процесс повторяется. При исправности VD6 схема сразу после запуска переходит на питание от обмотки 11 -7 трансформатора Т1.

Вторичное напряжение 14V (на холостом ходу 15V, под полной нагрузкой 11V) берется с обмотки 14-18. Выпрямляется диодом VD7 и сглаживается конденсатором С7.
В отличие от типовой схемы здесь не используется схема защиты выходного ключевого транзистора VT1 от повышенного тока сток-исток. А вход защиты -вывод 3 микросхемы просто соединен с общим минусом питания. Причина данного решения в отсутствии у автора в наличии необходимого низкоомного резистора (все-таки приходится делать из того что есть в наличии). Так что транзистор здесь не защищен от перегрузки по току, что конечно не очень хорошо. Впрочем, схема уже долго работает и без данной защиты. Однако, при желании можно легко сделать защиту, следуя типовой схеме включения ИМС UC3842.

Детали. Импульсный трансформатор Т1 -готовый ТПИ-8-1 от модуля питания МП-403 цветного отечественного телевизора типа 3-УСЦТ или 4-УСЦТ. Эти телевизоры сейчас частенько идут на разборку либо вообще выбрасываются. Да и трансформаторы ТПИ-8-1 в продаже присутствуют. На схеме номера выводов обмоток трансформатора показаны соответственно маркировке на нем и на принципиальной схеме модуля питания МП-403.

У трансформатора ТПИ-8-1 есть и другие вторичные обмотки, так что можно получить еще 14V используя обмотку 16-20 (либо 28V включив последовательно 16-20 и 14-18), 18V с обмотки 12-8, 29V с обмотки 12-10 и 125V с обмотки 12-6. Таким образом можно получить источник питания для питания какого-либо электронного устройства, например УНЧ с предварительным каскадом.

Впрочем этим дело и ограничивается, потому что перематывать трансформатор ТПИ-8-1, - довольно неблагодарная работа. Его сердечник плотно склеен и при попытке его разделить ломается совсем не там, где ожидаешь. Так что вообще любое напряжение от этого блока получить не выйдет, разве что с помощью вторичного понижающего стабилизатора.

Транзистор IRF840 можно заменить на IRFBC40 (что в принципе тоже самое), либо на BUZ90, КП707В2.

Диод КД202 можно заменить любым более современным выпрямительным диодом на прямой ток не ниже 10А.

В качестве радиатора для транзистора VT1 можно использовать имеющийся на плате модуля МП-403 радиатор ключевого транзистора, немного переделав его.

Применение импульсных трансформаторов обеспечивает повыщение показателей надежности и долговечности, снижение габариттЯлх размеров и массы блоков и модулей питания. Но необходимо отметить также, что импульсные стабилизаторы, применяемые в блоках питания телевизоров, имеют следующие недостатки: более сложное устройство управления, повышенный уровень шумов, радиопомех и пульсации выходного напряжения и одновременно худшие динамические характеристики.

В задающих генераторах строчной или кадровой разверток, работающих по схеме блокинг-генераторов.

применяются импульсные трансформаторы и автотрансформаторы. Эти трансформаторы (автотрансформаторы) являются элементами с сильной индуктивной обратной связью. В технической литературе импульсные трансформаторы и автотрансформаторы для строчной развертки сокращенно обозначаются БТС и БАТС; для кадровой развертки - ВТК и ТБК. Импульсные трансформаторы ВТК и ТБК по конструкции практически не отличаются от других трансформаторов. Изготавливают трансформаторы как для объемного, так и для печатного монтажа.

В блоках и модулях питания применяются импульсные трансформаторы типов ТПИ-2, ТПИ-3, ТПИ-4-2, ТПИ-5 и др.

Намоточные данные трансформаторов, работающих в импульсном режиме, применяемых в стационарных и переносных телевизионных приемниках, приведены в табл. 7.13.

Таблица 7.13. Намокяиые данные имп}1льсяых трансформаторов, 1фименяемых в телевизорах

Обознанение

Марка и диаметр

типономшала

обмотки трансфор-

провода, мм

ние постоянному

трансформатора

Намагничивающая

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

Стабилизации

ПЭВТЛ-2 0,45

Положительной об-

Рядовая в

ПЭВТЛ-2 0,45

ратной связи

Выпрямителей с на-

Рядовая в

пряжениями, В:

два провода

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

Намагничивания То же

Рядовая в два провода

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

Стабилизации

ПЭВТЛ-2 0,45

Выпрямителей с на-

пряжениями, В:

ПЭВТЛ-2 0,45

Рядовая в два провода

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

Фольга один слой

Положительной об-

ПЭВТЛ-2 0,45

ратной связи

или Ш (УШ)

Намагничивания

Рядовая в два провода

ПЭВТЛ-2 0,45

Намагничивания

ПЭВТЛ-2 0,45

Стабилизации

Рядовая, шаг 2,5 мм

ПЭВТЛ-2 0,45

Выпрямителей с на-

пряжением, В:

ПЭВТЛ-2 0,45

Рядовая в два провода

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

Продолжение табл. 7.13

Обозначение

Наименование

Марка и диаметр

Сопротивле-

типонокмнала

провода, мм

ние постоянному

трансформатора

Положителыюй об-

ПЭВТЛ-2 0,45

ратной связи

Намагничивания

Рядовая в

ПЭВТЛ-2 0,45

два провода

ПЭВТЛ-2 0,45

Стабилизации

ПЭВТЛ-2 0,25

Выходных выпрями-

телей с напряже-

ПЭВТЛ-2 0,45

Рядовая в

ПЭВТЛ-2 0,45

два провода

Рядовая в

ПЭВТЛ-2 0,45

два провода

ПЭВТЛ-2 0,45

Положительной об-

ПЭВТЛ-2 0,45

ратной связи

Первичная

Вторичная

12 пластин

Первичная

Универсаль-

Вторичная

Первичная

Вторичная

Первичная

Рекуперационная

Первичная

Обратной связи

Выходная

Первичная сетевая

Рис. 1. Схема платы сетевого фильтра.

В советских телевизорах Горизонт Ц-257 применялся питания с промежуточным преобразованием напряжения сети частотой 50 Гц в импульсы прямоугольной формы с частотой следования 20...30 кГц и последующим их выпрямлением. Выходные напряжения стабилизируются путем изменения длительности и частоты повторения импульсов.

Источник выполнен в виде двух функционально законченных узлов: модуля питания и плата сетевого фильтра. В модуле обеспечена развязка шасси телевизора от сети, а элементы, гальванически связанные с сетью, закрыты экранами, ограничивающими доступ к ним.

Основные технические характеристики импульсного блока питания

  • Максимальная выходная мощность, Вт ........100
  • Коэффициент полезного действия ..........0,8
  • Пределы изменения напряжения сети, В ......... 176...242
  • Нестабильность выходных напряжений, %, не более ..........1
  • Номинальные значения тока нагрузок, мА, источников напряжений, В:
    135
    ....................500
    28 ....................340
    15 ..........700
    12 ..........600
  • Масса, кг..................1

Рис. 2 Принципиальная схема модуля питания.

Он содержит выпрямитель сетевого напряжения (VD4-VD7), каскад запуска (VT3), узлы стабилизации (VT1) и блокировки 4VT2), преобразователь (VT4, VS1, Т1), четыре однополупериодных выпрямителя выходных напряжений (VD12-VD15) и компенсационный стабилизатор напряжения 12 В (VT5-VT7).

При включении телевизора напряжение сети через ограничительный резистор и цепи помехоподавления, расположенные на плате фильтров питания, поступает на выпрямительный мост VD4-VD7. Выпрямленное им напряжение через обмотку намагничивания I импульсного трансформатора Т1 проходит на коллектор транзистора VT4. Наличие этого напряжения на конденсаторах С16, С19, С20 индицирует светодиод HL1.

Положительные импульсы сетевого напряжения через конденсаторы С10, С11 и резистор R11 заряжают конденсатор С7 каскада запуска. Как только напряжение между эмиттером и базой 1 однопереходного транзистора VT3 достигает 3 В, он открывается и конденсатор С7 быстро разряжается через его переход эмиттер - база 1, эмиттерный переход транзистора VT4 и резисторы R14, R16. В результате транзистор VT4 открывается на 10...14 мкс. За это время ток в обмотке намагничивания I возрастает до 3...4 А, а затем, когда транзистор VT4 закрыт, уменьшается. Возникающие при этом на обмотках II и V импульсные напряжения выпрямляются диодами VD2, VD8, VD9, VD11 и заряжают конденсаторы С2, С6, С14: первый из них заряжается от обмотки II, два других - от обмотки V. При каждом последующем включении и выключении транзистора VT4 происходит подзарядка конденсаторов.

Что же касается вторичных цепей, то в начальный момент после включения телевизора конденсаторы С27- СЗО разряжены, и модуль питания работает в режиме, близком к короткому замыканию. При этом вся энергия, накопленная в трансформаторе Т1, поступает во вторичные цепи , и автоколебательный процесс в модуле отсутствует.

По окончании зарядки конденсаторов колебания остаточной энергии магнитного поля в трансформаторе Т1 создают такое напряжение положительной обратной связи в обмотке V, которое приводит к возникновению автоколебательного процесса.

В этом режиме транзистор VT4 открывается напряжением положительной обратной связи, а закрывается напряжением на конденсаторе С14, поступающим через тиристор VS1. Происходит это так. Линейно нарастающий ток открывшегося транзистора VT4 создает на резисторах R14 и R16 падение напряжения, которое в положительной полярности через ячейку R10C3 поступает на управляющий электрод тиристор VS1. В момент, определяемый порогом срабатывания, тиристор открывается, напряжение на конденсаторе С14 оказывается приложенным в обратной полярности к эмиттерному переходу транзистора VT4, и он закрывается.

Таким образом, включение тиристора задает длительность пилообразного импульса коллекторного тока транзистора VT4 и соответственно количество энергии, отдаваемой во вторичные цепи.

Когда выходные напряжения модуля достигают номинальных значений , конденсатор С2 заряжается настолько, что напряжение, снимаемое с делителя R1R2R3, становится больше напряжения на стабилитроне VD1 и транзистор VT1 узла стабилизации открывается. Часть его коллекторного тока суммируется в цепи управляющего электрода тиристора с током начального смещения, создаваемым напряжением на конденсаторе С6, и током, возникающим под действием напряжения на резисторах R14 и R16. В результате тиристор открывается раньше и коллекторный ток транзистора VT4 уменьшается до 2...2,5 А.

При увеличении напряжения сети или уменьшении тока нагрузки возрастают напряжения на всех обмотках трансформатора, а следовательно, и напряжение на конденсаторе С2. Это приводит к увеличению коллекторного тока транзистора VT1, более раннему открыванию тиристора VS1 и закрыванию транзистора VT4, а следовательно, к уменьшению мощности, отдаваемой в нагрузку. И наоборот, при уменьшении напряжения сети или увеличении тока нагрузки мощность, передаваемая в нагрузку, увеличивается. Таким образом, стабилизируются сразу все выходные напряжения. Подстроечным резистором R2 устанавливают их начальные значения.

В случае короткого замыкания одного из выходов модуля автоколебаниям срываются. В результате транзистор VT4 открывается только каскадом запуска на транзисторе VT3 и закрывается тиристором VS1 при достижении током коллектора транзистора VT4 значения 3,5...4 А. На обмотках трансформатора появляются пакеты импульсов, следующих с частотой питающей сети и частотой заполнения около 1 кГц. В этом режиме модуль может работать длительное время, так как коллекторный ток транзистора VT4 ограничен допустимым значением 4 А, а токи в выходных цепях - безопасными значениями.

С целью предотвращения больших бросков тока через транзистор VT4 при чрезмерно пониженном напряжении сети (140... 160 В) и, следовательно, при неустойчивом срабатывании тиристора VS1 предусмотрен узел блокировки, который в таком случае выключает модуль. На базу транзистора VT2 этого узла поступает пропорциональное выпрямленному сетевому постоянное напряжение с делителя R18R4, а на эмиттер - импульсное напряжение частотой 50 Гц и амплитудой, определяемой стабилитроном VD3. Их соотношение выбрано таким, что при указанном напряжении сети транзистор VT2 открывается и импульсами коллекторного тока открывает тиристор VS1. Автоколебательный процесс прекращается. С повышением напряжения сети транзистор закрывается и на работу преобразователя не влияет. Для уменьшения нестабильности выходного напряжения 12 В применен компенсационный стабилизатор напряжения на транзисторах (VT5-VT7) с непрерывным регулированием. Его особенность - ограничение тока при коротком замыкании в нагрузке.

С целью уменьшения влияния на другие цепи выходной каскад канала звукового сопровождения питается от отдельной обмотки III.

В импульсном трансформаторе ТПИ-3 (Т1) применен магнитопровод М3000НМС Ш12Х20Х15 с воздушным зазором 1,3 мм на среднем стержне.

Рис. 3. Схема расположения обмоток импульсного трансформатора ТПИ-3.

Намоточные данные трансформатора ТПИ-3 импульсного блока питания приведены :

Все обмотки выполнены проводом ПЭВТЛ 0,45. С целью равномерного распределения магнитного поля по вторичным обмоткам импульсного трансформатора и увеличения коэффициента связи обмотка I разбита на две части, расположенные в первом и последнем слоях и соединенные последовательно. Обмотка стабилизации II выполнена с шагом 1,1 мм в один слой. Обмотка III и секции 1 - 11 (I), 12-18 (IV) намотаны в два провода. Для снижения уровня излучаемых помех введены четыре электростатических экрана между обмотками и короткозамкнутый экран поверх магнитолровода.

На плате фильтров питания (рис. 1) размещены элементы заградительного фильтра L1C1-СЗ, токоограничивающий резистор R1 и устройство автоматического размагничивания маски кинескопа на терморезисторе R2 с положительным ТКС. Последнее обеспечивает максимальную амплитуду тока размагничивания до 6 А с плавным спадом в течение 2...3 с.

Внимание!!! При работе с модулем питания и телевизором необходимо помнить, что элементы платы фильтров питания и часть деталей модуля находятся под напряжением сети. Поэтому ремонтировать и проверять модуль питания и плату фильтров под напряжением можно только при включении их в сеть через разделительный трансформатор.

Импульсные трансформаторы питания (ТПИ) применяются в импульсных устройствах электропитания бытовой и офисной аппаратуры с промежуточным преобразованием напряжения питающей сети 127 или 220 В с частотой 50 Гц в импульсы прямоугольной формы с частотой следования до 30 кГц, выполненные в виде модулей или блоков питания: БП, МП-1, МП-2, МП-З, МП-403 и др. Модули имеют одинаковую схему и отличаются только типом используемого импульсного трансформатора и номиналом одного из конденсаторов на выходе фильтра, что определяется особенностями модели, в которой они применяются.
Мощные трансформаторы ТПИ для импульсных источников питания используются для развязки и передачи энергии во вторичные цепи. Накопление энергии в этих трансформаторах нежелательно. При проектировании таких трансформаторов в качестве первого шага необходимо определить размах колебаний магнитной индукции ДВ в установившемся режиме. Трансформатор должен быть рассчитан на работу при возможно большем значении ДВ, что позволяет иметь меньшее число витков в намагничивающей обмотке, увеличить номинальную мощность и уменьшить индуктивность рассеивания На практике значение ДВ может ограничиваться либо индукцией насыщения сердечника B s , либо потерями в магнитопроводе трансформатора.
В большинстве полномостовых, полумостовых и двухполупериодных (балансных) схем со средней точкой трансформатор возбуждается симметрично. При этом значение магнитной индукции изменяется симметрично относительно нуля характеристики намагничивания, что дает возможность иметь теоретическое максимальное значение ДВ, равное удвоенному значению индукции насыщения Bs. В большинстве одно-тактных схем, используемых, например, в однотактных преобразователях, магнитная индукция колеблется полностью в пределах первого квадранта характеристики намагничивания от остаточной индукции Br до индукции насыщения Bs ограничивая теоретический максимум ДВ до значения (Bs — BR). Это означает, что если ДВ не ограничено потерями в магнитопроводе (обычно на частотах ниже 50…100 кГц), для однотактных схем потребуется трансформатор больших размеров при одной и той же выходной мощности.
В питаемых напряжением схемах (которые включают все схемы понижающих стабилизаторов), в соответствии с законом Фарадея, значение ДВ определяется произведением «вольт-секунда» на первичной обмотке. В установившемся режиме произведение «вольт-секунда» на первичной обмотке устанавливается на постоянном уровне. Размах колебаний магнитной индукции, таким образом, также постоянен.
Однако, при обычном методе управления рабочим циклом, который используется большинством микросхем для импульсных стабилизаторов, при запуске и во время резкого увеличения тока нагрузки величина ДВ может достигать удвоенного значения от значения в установившемся режиме Поэтому, чтобы сердечник не насыщался при переходных процессах, установившееся значение ДВ должно быть в два раза меньше теоретического максимума Однако же, если используется микросхема, позволяющая контролировать значение произведения «вольт-секунда» (схемы с отслеживанием возмущения входного напряжения), то максимальное значение произведения «вольт-секунда» фиксируется на уровне, немного превышающем установившийся Это позволяет увеличить значение ДВ и улучшает производительность трансформатора.
Значение индукции насыщения B s для большинства ферритов для сильных магнитных полей типа 2500НМС превышает значение 0.3 Тл. В двухтактных питаемых напряжением схемах величина приращения индукции ДВ обычно ограничивается значением 0,3 Тл. При увеличении частоты возбуждения до 50 кГц потери в магнитопроводе приближаются к потерям в проводах. Увеличение потерь в магнитопроводе на частотах выше 50 кГц приводит к уменьшению значения ДВ.
В однотактных схемах без фиксации произведения «вольт-секунда» для сердечников с (Bs — Br), равным 0,2 Тл, и с учетом переходных процессов установившееся значение ДВ ограничивается на уровне только 0,1 Тл Потери в магнитопроводе на частоте 50 кГц будут незначительными вследствие небольшого размаха колебаний магнитной индукции. В схемах с фиксированным значением произведения «вольт-секунда» величина ДВ может принимать значения до 0,2 Тл, что дает возможность значительно сократить габаритные размеры импульсного трансформатора.
В питаемых током схемах источников питания (повышающие преобразователи и управляемые током понижающие стабилизаторы на связанных катушках индуктивности), значение ДВ определяется произведением «вольт-секунда» на вторичной обмотке при фиксированном выходном напряжении. Так как произведение «вольт-секунда» на выходе не зависит от изменений входного напряжения, то питаемые током схемы могут работать со значением ДВ, близким к теоретическому максимуму (если не учитывать потери в сердечнике), без необходимости ограничения величины произведения «вольт-секунда».
На частотах выше 50 . 100 кГц значение ДВ обычно ограничивается потерями в магнитопроводе.
Вторым шагом при проектировании мощных трансформаторов для импульсных источников питания необходимо произвести правильный выбор типа сердечника, который не будет насыщаться при заданном произведении «вольт-секунда» и обеспечит приемлемые потери в магнитопроводе и обмотках Для этого можно использовать итерационный процесс вычисления, однако приводимые ниже формулы (3 1) и (3 2) позволяют вычислить приближенное значение произведения площадей сердечника S o S c (произведение площади окна сердечника S o и площади поперечного сечения магнитопровода S c) Формула (3 1) применяется, когда значение ДВ ограничено насыщением, а формула (3.2) - когда значение ДВ ограничено потерями в магнитопроводе в сомнительных случаях вычисляются оба значения и используется наибольшее из таблиц справочных данных для различных сердечников выбирается тот тип сердечника, у которого произведение S o S c превышает расчетную величину.

где
Рвх = Рвых/л = (выходная мощность/КПД);
К - коэффициент, учитывающий степень использования окна сердечника, площади первичной обмотки и конструктивный фактор (см. табл 3 1); fp - рабочая частота трансформатора


Для большинства ферритов для сильных магнитных полей коэффициент гистерезиса равен К к = 4 10 5 , а коэффициент потерь на вихревые токи - К вт = 4 10 10 .
В формулах (3.1) и (3.2) предполагается, что обмотки занимают 40% от площади окна сердечника, соотношение между площадями первичной и вторичной обмоток соответствует одинаковой плотности тока в обеих обмотках, равной 420 А/см2, и что суммарные потери в магнитопроводе и обмотках приводят к перепаду температур в зоне нагрева на 30 °С при естественном охлаждении.
В качестве третьего шага при проектировании мощных трансформаторов для импульсных источников питания необходимо произвести расчет обмоток импульсного трансформатора.
В табл. 3.2 приведены унифицированные трансформаторы электропитания типа ТПИ, используемые в телевизионных приемниках.








Намоточные данные трансформаторов типа ТПИ, работающих в импульсных блоках питания стационарных и переносных телевизионных приемниках, приведены в табл 3. 3 Принципиальные электрические схемы трансформаторов ТПИ показаны на рис 3. 1

Рис. 7.20. Принципиальная электрическая схема трансформатора типа ТС-360М Д71Я питания телевизора ЛПТЦ-59-1И

короткого межвиткового замыкания. Коррозия малых диаметров обмоточных проводов приводит к их обрыву.

Конструкция трансформаторов типа ТС-360М обеспечивает надежную работу в блоках питания телевизоров без обрывов в обмотках и других повреждений, а также без появления коррозии на металлических частях при многократном циклическом воздействии температур при повышенной влажности и воздействии механических нагрузок, указанных в условиях эксплуатации. Современные новые технологические процессы изготовления трансформаторов и пропитка обмоток герметизирующими составами увеличивают срок службы как самих трансформаторов, так и аппаратуры в целом.

Трансформаторы устанавливают на металлическом шасси телевизора, крепят четырьмя винтами и заземляют.

Намоточные данные обмоток и электрические парамет ры трансформаторов типа ТС-360М приведены в табл. 7.11 и 7.12. Принципиальная электрическая схема трансформатора дана на рис. 7.20.

Сопротивление изоляции между обмотками, а также между обмотками и металлическими частями трансформатора в нормальных условиях не менее 100 МОм.

7.2. Трансформаторы питания импульсные

В современных моделях телевизионных приемников широкое применение находят импульсные трансформаторы питания, работающие в составе блоков питания или модулей питания, обеспечивая преимущества, рассмотренные в главе, посвященной унифицированным импульсным трансформаторам питания. Телевизионные импульсные трансформаторы имеют ряд существенных особенностей по конструктивному исполнению и техническим характеристикам.

Импульсные сетевые блоки и модули питания телевизионных приемников, питающиеся от сети переменного тока напряжением 127 или 220 В с частотой 50 Гц, применяются для получения напряжений переменного и постоянного тока, необходимых для питания всех функциональных узлов телевизора. Эти блоки и модули питания отличаются от рассмотренных традиционных меньшей материалоемкостью, большей удельной мощностью и более высоким КПД, что обусловлено отсутствием трансформаторов питания типа ТС, работающих на частоте 50 Гц, и использованием Импульсных стабилизаторов вторичных

напряжений вместо компенсационных непрерывного действия.

В импульсных сетевых блоках питания переменное напряжение сети преобразуется в сравнительно высокое напряжение постоянного тока с помощью бестрансформаторного выпрямителя с соответствующим фильтром. Напряжение с выхода фильтра поступает на вход импульсного стабилизатора напряжения, который понижает напряжение с 220 В до 100... 150 В и стабилизирует его. От стабилизатора питается инвертор, выходное напряжение которого имеет форму прямоугольного импульса с повышенной частотой до 40 кГц.

Выпрямитель с фильтром преобразует это напряжение в напряжение постоянного тока. Переменное напряжение получают непосредственно от инвертора. Высокочастотный импульсный трансформатор инвертора устраняет гальваническую связь между выходом блока питания и сети питания. Если не предъявляются повышенные требования к стабильности выходных напряжений блока, то стабилизатор напряжения не применяется. В зависимости от конкретных требований, предъявляемых к блоку питания, он может содержать различные дополнительные функциональные узлы и цепи, так или иначе связанные с импульсным трансформатором: стабилизатор выходного напряжения, устройство захциты от перегрузок и аварийных режимов, цепи первоначального запуска, подавления помех и др. Для блоков питания телевизоров характерно использование инверторов, частота переключения которых определяется насыщением силового трансформатора. В этих случаях применяются инверторы с двумя трансформаторами.

В блоке питания с выходной мощностью 180 В*А при токе нагрузки 3,5 А и частоте преобразования 27 кГц применяются два импульсных трансформатора на кольцевых магнитопроводах. Первый трансформатор изготавливают на двух кольцевых магнитопроводах К31х 18,5x7 из феррита марки 2000НН. Обмотка I содержит 82 витка провода ПЭВ-2 0,5, обмотка П - 16 + 16 витков провода ПЭВ-2 1,0, обмотка Ш - 2 витка провода ПЭВ-2 0,3. Второй трансформатор изготавливают на кольцевом магнитопроводе К10Х6Х5 из феррита марки 2000НН. Обмотки выполнены из провода ПЭВ-2 0,3. Обмотка I содержит десять витков, обмотки П и П1 - по шести витков. Обмотки I обоих трансформаторов размещены равномерно по магнитопроводу, обмотка П1 первого трансформатора размещается на месте, не занятом обмоткой П. Обмотки изолированы между собой лентой из лакоткани. Между обмотками I и II первого трансформатора изоляция трехслойная, между остальными обмотками - однослойная.

В блоке питания: номинальная мощность нагрузки 100 В-А, выходное напряжение не менее plusmn;27 В при номинальной выходной мощности и не менее plusmn;31 В при выходной мощности 10 В-А, КПД - примерно 85 % при номинальной выходной мощности, частота преобразования 25...28 кГц, применяются три импульсных трансформатора. Первый трансформатор выполнен на кольцевом магнитопроводе К10Х6Х4 из феррита марки 2000НМС, обмотки - из провода ПЭВ-2 0,31. Обмотка I содержит восемь витков, остальные обмотки - по четыре витка. Второй трансформатор выполнен на кольцевом магнитопроводе К10Х6Х4 из феррита марки 2000НМЗ, обмотки намотаны проводом ПЭВ-2 0,41. Обмотка I представляет собой один виток, обмотка II содержит два витка. Третий трансформатор имеет сердечник типа Ш7х7 из феррита марки ЗОООНМС. Обмотка I содержит 60x2 витков (2 секции), а обмотка II - 20 витков провода ПЭВ-2 0,31, обмотки III и IV - по 24 витка провода ПЭВ-2 0,41. Обмотки II, III, IV располагаются между секциями обмотки I. Под обмотками

ni и IV и над ними помещены экраны в виде замкнутого витка медной фольги. Магнитопровод третьего трансформатора гальванически соединен с положительным полюсом первичного выпрямителя. Такая конструкция трансформатора необходима для подавления помех, источником которых является мощный инвертор блока.

Применение импульсных трансформаторов обеспечивает повыщение показателей надежности и долговечности, снижение габариттЯлх размеров и массы блоков и модулей питания. Но необходимо отметить также, что импульсные стабилизаторы, применяемые в блоках питания телевизоров, имеют следующие недостатки: более сложное устройство управления, повышенный уровень шумов, радиопомех и пульсации выходного напряжения и одновременно худшие динамические характеристики.

В задающих генераторах строчной или кадровой разверток, работающих по схеме блокинг-генераторов.

применяются импульсные трансформаторы и автотрансформаторы. Эти трансформаторы (автотрансформаторы) являются элементами с сильной индуктивной обратной связью. В технической литературе импульсные трансформаторы и автотрансформаторы для строчной развертки сокращенно обозначаются БТС и БАТС; для кадровой развертки - ВТК и ТБК. Импульсные трансформаторы ВТК и ТБК по конструкции практически не отличаются от других трансформаторов. Изготавливают трансформаторы как для объемного, так и для печатного монтажа.

В блоках и модулях питания применяются импульсные трансформаторы типов ТПИ-2, ТПИ-3, ТПИ-4-2, ТПИ-5 и др.

Намоточные данные трансформаторов, работающих в импульсном режиме, применяемых в стационарных и переносных телевизионных приемниках, приведены в табл. 7.13.

Таблица 7.13. Намокяиые данные имп}1льсяых трансформаторов, 1фименяемых в телевизорах

Обознанение

Марка и диаметр

типономшала

обмотки трансфор-

провода, мм

ние постоянному

трансформатора

Намагничивающая

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

Стабилизации

Шаг 2,5 мм

ПЭВТЛ-2 0,45

Положительной об-

Рядовая в

ПЭВТЛ-2 0,45

ратной связи

Выпрямителей с на-

Рядовая в

пряжениями, В:

два провода

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

Намагничивания То же

Рядовая в два провода

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

Стабилизации

ПЭВТЛ-2 0,45

Выпрямителей с на-

пряжениями, В:

ПЭВТЛ-2 0,45

Рядовая в два провода

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

Фольга один слой

Положительной об-

ПЭВТЛ-2 0,45

ратной связи

или Ш (УШ)

Намагничивания

Рядовая в два провода

ПЭВТЛ-2 0,45

Намагничивания

ПЭВТЛ-2 0,45

Стабилизации

Рядовая, шаг 2,5 мм

ПЭВТЛ-2 0,45

Выпрямителей с на-

пряжением, В:

ПЭВТЛ-2 0,45

Рядовая в два провода

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

Продолжение табл. 7.13

Обозначение

Наименование

Марка и диаметр

Сопротивле-

типонокмнала

провода, мм

ние постоянному

трансформатора

Положителыюй об-

ПЭВТЛ-2 0,45

ратной связи

Намагничивания

Рядовая в

ПЭВТЛ-2 0,45

два провода

ПЭВТЛ-2 0,45

Стабилизации

ПЭВТЛ-2 0,25

Выходных выпрями-

телей с напряже-

ПЭВТЛ-2 0,45

Рядовая в

ПЭВТЛ-2 0,45

два провода

Рядовая в

ПЭВТЛ-2 0,45

два провода

ПЭВТЛ-2 0,45

Положительной об-

ПЭВТЛ-2 0,45

ратной связи

Первичная

Вторичная

12 пластин

Первичная

Универсаль-

Вторичная

Первичная

Вторичная

Первичная

Рекуперационная

Первичная

Обратной связи

Выходная

Первичная сетевая

Рядовая в

ПЭВТЛ-2 0,5


Блок питания содержит малое количество компонентов. В качестве импульсного трансформатора используется типовой понижающий трансформатор из компьютерного блока питания.
На входе стоит NTC термистор (Negative Temperature Coefficient) - полупроводниковый резистор с положительным температурным коэффициентом, который резко увеличивает свое сопротивление, когда превышена некоторая характеристическая температура TRef. Защищает силовые ключи в момент включения на время зарядки конденсаторов.
Диодный мост на входе для выпрямления сетевого напряжения на ток 10А.
Пара конденсаторов на входе берется из расчета 1 мкф на 1 Вт. В нашем случае конденсаторы "вытянут" нагрузку в 220Вт.
Драйвер IR2151 - для управления затворами полевых транзисторов, работающих под напряжением до 600В. Возможная замена на IR2152, IR2153. Если в названии есть индекс "D", например IR2153D, то диод FR107 в обвязке драйвера не нужен. Драйвер поочередно открывает затворы полевых транзисторов с частотой, задаваемой элементами на ножках Rt и Ct.
Полевые транзисторы используются предпочтительно фирмы IR (International Rectifier) . Выбирают на напряжение не менее 400В и с минимальным сопротивлением в открытом состоянии. Чем меньше сопротивление, тем меньше нагрев и выше КПД. Можно рекомендовать IRF740, IRF840 и пр. Внимание! Фланцы полевых транзисторов не закорачивать; при монтаже на радиатор использовать изоляционные прокладки и шайбы-втулки.
Трансформатор типовой понижающий из блока питания компьютера. Как правило, цоколевка соответствует приведенной на схеме. В этой схеме работают и самодельные трансформаторы, намотанные на ферритовых торах. Расчет самодельных трансформаторов ведется на частоту преобразования 100 кГц и половину выпрямленного напряжения (310/2 = 155В). Вторичные обмотки можно расчитать на другое напряжение.

Диоды на выходе с временем восстановления не более 100 нс. Этим требованиям отвечают диоды из семейства HER (High Efficiency Rectifier - высоко-эффективные выпрямительные). Не путать с диодами Шоттки.
Емкость на выходе - буферная емкость. Не следует злоупотреблять и устанавливать емкость более 10000 мкф.
Как и любое устройство, этот блок питания требует внимательной и аккуратной сборки, правильной установки полярных элементов и осторожности при работе с сетевым напряжением.
Правильно собранный блок питания не нуждается в настройке и налаживании. Не следует включать блок питания без нагрузки.

Вариант блока питания с выходным трансформатором на кольцевом сердечнике.

Решил собрать этот импульсный блока питания с выходным трансформатором на кольцевом сердечнике. Как оказалось частота преобразования при R2 10 кОм и C5 1000 пФ не 100 кГц а 70 кГц. Она определяется по формуле:

В качестве сердечника применил имеющийся в наличии, отечественный магнитопровод М2000НМ 45х28х12. Расчет производил с помощью программы ExcellentIT

Во время настройки включил вместо предохранителя лампу накаливания 60Вт, чтобы в случае ошибок в монтаже не «спалить» блок питания. Если в процессе настройки лампа горит, значит где-то замыкание, если мигает скорее всего неправильно рассчитан выходной трансформатор. Блок питания заработал сразу, расчеты оказались верными. Единственное что грелся гасящий резистор R1. Пришлось увеличить его мощность до 5 ВТ. Диоды также желательно поставить помощней с малым временем восстановления.